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Abstract \ye study on-line learning with a momentum term for nonlinear leaming rules. 
Through introduction of auxiliary variables, we show that the leaming process can be desc"bed 
by a Markov process. 

For small leming pxameters q and momentum parmeten (I close to I ,  such that 
y = ,,/(I -(I)? is finite. the time-scales for the evolution of the weights and the auxiliary 
variables we the same. In this m e  Van Kampen's expansion can be applied in a straightfoward 
m n e r .  We obtain evolutian equations for the average network state and the Eucmstions around 
this average. These evolution equations depend (after reSWling a of the time and fluctuations) 
only on y :  all combinakions ( q ,  (I) with the same value of y give rise to similar behaviour. 

The wse with (I constant and q small requires a completely different analysis There are two 
different time-scales: a fast time-scale on which the auxiliary variables equilibrate and a slow 
time-scale for the change of the weighs. By projection on the space of slow variables the fast 
variables can be eliminated. We hnd that, for small leaming parameters q and finite momen" 
parameters (I, lewning with momentum is equivalent to leaming without a momentum term with 
a rescaled learning parameter 6 = q / ( l  -(I). Simulations with the nonlinear Oja learning rule 
confirm the theoretical resulll. 

1. Introduction 

1.1. Background 

On-line learning stands for learning in artificial neural networks where a weight change 
takes place each time a training pattern x is drawn at random from the total training set and 
is presented to the network. This weight change can be written in the general form 

(0  
with w(n) the network state at iteration step n, q the so-called learning parameter, and 
f(., .) the learning rule. Because of the random presentation of patterns x. on-line learning 
as described by ( I )  is a stochastic process. The probability of being in a certain network 
state w can be shown to obey a master equation. In recent years. theoretical studies of this 
master equation have provided a better understanding of on-line learning processes [1-6]. 

When the last weight change is added to the learning rule (l), the weight change takes 
the form 

(2) 
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Aw(n) = w(n + 1) - w(n) = q f ( w ( n ) ,  x )  

Aw(n) = q f ( w ( n ) .  x )  + a  Aw(n - 1) 
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with a the so-called momentum parameter. Equation (2) describes on-line learning with 
a momentum term. The incorporation of this momentum term is frequently applied to 
back-propagation [7] with the intention of speeding up learning with essentially no increase 
in computational complexity (see, for example, [8] for references). The back-propagation 
learning rule, like most learning rules in the neural network literature, is nonlinear in the 
weights w. Theoretical studies, however, have mainly focused on the linear LMS algorithm 
with momentum updating [9, lo]. In this paper we will consider the effect of the momentum 
term on general nonlinear learning rules and ask ourselves whether incorporation of the 
momentum term leads to an improvement of the performance of on-line learning rules. 

1.2. F r a m e w r k  

Equation ( 2 )  describes a second-order process. It can be turned into a Markov process 
through the introduction of the auxiliary variable p ( n )  

Aw(n) = q f ( w ( n ) , x f + a ~ ( n )  

A!.W = 0 f ( w ( n ) ,  x )  + (a - 1) A n )  

Aw(n - I ) :  

With definitions q = ( I  - a)p/q, E 1 -a, and y = J ( 1  -a)', we can rewrite this as 

We are interested in the evolution of the probability P (U, q. t )  for the system to be in state 
( w ,  q )  at time t .  With Poisson-distributed time intervals between succeeding learning steps, 
this probability P (w. q,  t )  obeys the master equation [I  1,2] 

a P ( w ' q ' t )  at =/dw'dq'[T(w,qIw',q')P(w',q',r) -T(w',q'lw,q)P(w,q,t)] ( 4 )  

with transition probability 

T(w. q I w'. 4') = (S(w - w' - y d ( 1  - 6) 4 -t E f ( W ' , X ) I )  S(q - q' - 6 [f(w', x )  - q'l))* 
where (.)* denotes an average over the set C2 of training patterns. Averages with respect to 
the probability density P (U, m ,  t )  will be indicated by (.)a or, more explicitly, by 
The master equation (4) is the starting point of the theoretical analysis presented in this 
paper. For notational convenience we treat the weight vector w as a one-dimensional 
variable. Generalization to higher dimensions is straightforward and has no influence on 
the basic ideas presented in this paper. 

1.3. Outline 

In section 2 we will study the system (3) for finite y in the limit of very small E ,  i.e. 
for small learning parameters q and momentum parameters a close to 1. In this case the 
time-scales of the equations for the weight w and the auxiliary variable q are of the same 
order. We can immediately apply Van Kampen's expansion [I21 to the master equation (4) 
and obtain evolution equations for the average weight w and the fluctuations around this 
average. 

The situation with t finite and y small, which corresponds to finite momentum 
parameters a (not close to 1) and (again) small learning parameters q,  will be considered 
in section 3. Now the evolution of the auxiliaq variable q takes place on a much faster 
time-scale than the evolution of the weight w. Through projection of the master equation (4) 
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on the ‘slow’ space of the weight w. the fast variable q can be eliminated, resulting again 
i n  (approximate) evolution equations for the weight w. 

In section 4 we check our theorelical results with simulations of the nonlinear Oja 
learning rule [13]. The main results are summarized and discussed in section 5. 

2. Equal time-scales 

2.1. Van Kampen’s expansion 

In this section we will study the two-dimensional system (3) for small values of E and finite 
values of y .  i.e. in the limits q + 0 and (Y + 1 with a constant ratio y = q / ( l  - cy)? 
The master equation (4) can be approximated for small parameters c using Van Kampen’s 
expansion. Basically (see [12,5,6] for a more detailed description of Van Kampen’s 
expansion), this expansion is based on the assumption that the stochastic process (3) can 
be viewed as a deterministic trajectory with (small) superimposed fluctuations of order &. 
Starting from the ansiitze 

w=@+&( s = * + & x  
Van Kampen‘s expansion yields evolution equations for the deterministic variables q4 and 
@, and for the average and (co)variance of the noise terms 5 and x ,  

After rescaling time with y c  (we define a new time T s yet ) ,  we obtain the deterministic 
equations 

i = @  v $ = f d @ ) - @  (5) 

with drift f, (@), the first moment of the learning rule f(@, x ) .  For later purposes we give 
the general definition of the kth jump moment: 

f k U )  = ( f k ( @ i x ) ) O  (6) 
The evolution of the averages of the noise terms follows 

with 

where the prime denotes differentiation of the function with respect to its argument. All 
learning networks are initialized at the same weight configuration, i.e. w(0) = @(a) for 
all networks in the ensemble 6, This immediately implies (()s(,) = ( x ) ~ ( , )  = 0 for a11 
later times f .  From ( 5 )  we then derive that the average network state ( w ) ~  = r$ obeys the 
second-order differential equation 

Y 1 +i - f i ( @ )  = 0 
The evolution of the covariance matrix 

is governed by 
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with a diffusion matrix 

The a priori ansatz in Van Kampen's expansion is that the noise terms 6 and x are of 
order I .  From equations (7) and (8), we see that this is valid for short times t and in 
regions of weight space where the real parts of the eigenvalues of the matrix A ( 4 )  are 
positive. i.e. where f/(@) c 0. The same conditions hold for the validity of Van Kampen's 
expansion of the plain learning process (1) [5,6]. 

2.2. Scaling properties 

Let us take a closer look at the evolution equations for the average network state and the 
fluctuations around this average. With the definitions 

the evolution equations (5) and (8) can be rewritten as 
8 , - @ = 0  

fl(4) - @ = Y + 
U, - 2 u z - * 2 = o  (9) 
f/(#) UI - 02 +U3 + @ [.flu) - 91 = Y& 
-203 + fd4) - 2 @ flu) + q2 = Y 53 - 2 Y f;u) 0 2 .  

In this set of coupled differential equations, y is the only remaining parameter. Suppose 
we know, through calculations or simulations, # ( r )  and U I ( T )  for a particular value of 
y = q / ( l  -or)', Then for all combinations (q, CY) with this particular y ,  the average weight 
and fluctuations at time t follow from (recall our definitions of time i and variance U , )  

(W)E(,) = 4Vii t )  (WZ - (W)Z)Ecr) = ii VI(! 0 (10) 

with 'rescaled learning parameter' ij = q/(l-or). This rescaled learning parameter regulates 
the tradeoff between speed and accuracy: a twice as large rescaled learning parameter leads 
to a twice as fast time-scale, but also doubles the fluctuations in the weights. In section 4 
we will describe simulations with the nonlinear Oja learning rule to check these scaling 
properties. 

For small y we can further simplify the set of equations (9). There are two different 
time-scales: a slow time-scale for the evolution of 4 and U ,  and a fast time-scale for the 
evolution of @, u2 and q. If we neglect all terms of order y ,  we can eliminate the fast 
variables $r, u2 and u3 and obtain 

(11) 

The same set of equations is obtained if Van Kampen's expansion is applied to the plain 
learning rule (1) with rescaled learning parameter = q / (1  -or) (see, for example, [5 ,6] .  
Similar results have been reported in earlier studies on linear learning rules 19, 10,141. In 
the next section we will generalize these results to nonlinear learning rules for any finite 
value of the momentum parameter CY, i.e. not close to 1. There we will go the other way 
around: first we will have to eliminate the fast variable q and only then can we apply Van 
Kampen's expansion. 

4 = fl(4) U l  = 2 fI,(4) U1 + fX4) . 
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3. Different time-scales 

3. I .  Perturbation theory 

In this section we will study the master equation (4) for small values of y and finite values 
of E ,  i.e. for small learning parameters q and momentum parameters a not close to 1 .  In 
these limits, we cannot approximate the master equation by Van Kampen's expansion as in 
section 2. However, as the results for y << 1 obtained in the previous section suggest, there 
are two different time-scales in the master equation. In the long time limit, we can try to 
eliminate the fast variable 9 and then obtain (a series expansion of) an evolution equation for 
@(W. I )  = S d q  P ( w ,  q ,  t ) .  Our approach is very loosely based on the 'adiabatic elimination 
of fast variables' in the theory of stochastic processes 115,161. 

Our starting point is the Kramers-Moyal expansion with respect to U' :  

x 6 ( q  - ( E f ( W , X ) + ( l  - + ? ' ] ) ) & 4 q ' , t )  - P ( w , q , t )  (12) 

which is a completely equivalent representation of the master equation (4) (see, for example, 
[12, 161). From this KramerFMoyaI expansion we will derive evolution equations for the 
moments 

1 

& ( w ,  t )  E d q q k P ( W , q , t )  k = 0,. . . ,CC.  s 
Note that the moment vector Q ( w ,  t )  is just a different representation of the probability 
distribution P(w, q. t )  and that Qo(w,  t )  = p ( w ,  1 ) .  Multiplying (12) by qK and integrating 
over q yields (recall our definitions E = 1 - a  and 6 = q / ( l  - a) )  

(13) 
with the jump moments f k ( W )  defined in (6). We can write (13) as a formal evolution 
equation (for notational convenience we suppress the ut and t dependence): 

a 
at 
- Q = H Q  

with 
m 

H = i"ff(") (15) 
"=O 

in which the matrices H ( " )  are defined componentwise by the operators 

(16) 
The fact that the operator H can be written as a series in the small parameter ij 
(equation (15)) gives us the possibility of treating the system (14) using perturbation theory. 

Let us first consider the unperturbed (6 = 0) system 

- Q =  a H (0)Q 
at 
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From the hiangular form of H(O), we immediately find its degenerate eigenvalues 

A L o ) = - ( l - C i K )  K = 0 , 1 ,  ...CO 

We define VJo) as the subspaces of eigenvectors with eigenvalue A:'), and Pjo) as the 
orthogonal projectors (i.e. PLo"P~o) = &pPiq) on the subspaces V;". These projectors 
commute with NCO), i.e. 

(18) 
The projection [PLo)Q](w, t )  is called a 'mode'. From (18) it follows that the evolution of 
a mode is governed by 

ppH(0)  = fp'p(0) = - ( I  -"")pjO', 

a 
at  
-[Pjo)Q] = H'o'[PLo)Q] = -(1 - o~")[P:~)Q] 

Since the modes are independent, the solution of the unperturbed system (17) is the sum of 
the solution of the modes: 

The modes with K # 0 will rapidly relax to equilibrium. We call these modes the fast 
modes. For large t ,  only the slow mode, i.e. the one with K = 0, will remain. We write 
P(O) as the projector on the slow mode, i.e. PcO) = Consequently, the projector on 
the fast modes is 1 - PCo). So, for large t the fast modes will be equilibrated, 

(19) [ 1 - PC0)] Q = 0 

-p(o)Q a = ff(o)p(o)Q, 
at 

and only the dynamics on the slow mode remains: 

(20) 

It is illustrative to see how we can arrive at an evolution equation for p ( w ,  t) from 
(20) using properties of the projector '%'(O)(UJ) and the operator H ( w ) .  In the appendix it is 
shown that the projector P(O)(w) has components 

q ( W )  = U ( ( W ) 8 O j  

where the vector v ( w )  obeys H'o)(w)v(w) = 0 and uo(w) = 1. Using the constraint (19), 
we can express all components Qn(w.r )  in terms of the zeroth component Qo(w,r):  
Qk(w, t) = ua(w)Qo(w, f ) .  This corresponds to elimination of the fast variable q and 
can be compared with the elimination of the variables 9,  C T ~ ,  and 03 in (9). Equation (20) 
now reduces to an equation for Qo(w, t )  = p ( w ,  t )  only: 

a h  
--P(w, t )  = 0.  
at 

This equation makes the rather trivial statement that in the unperturbed system (ij = 0) no 
le3rning takes place. 

For the perturbed system (14) we follow the same line of reasoning as for the unperturbed 
system (17). The starting point of perturbation theory is the assumption that the eigenvalues 
and eigenvectors of the perturbed system can be written as an expansion in the perturbation 
parameter i j .  We define V, as the subspaces spanned by the eigenvectors corresponding to 
eigenvalues of which the unperturbed value is and P, as the orthogonal projectors on 
these subspaces V,. As in the unperturbed case, we decompose the perturbed system into 
modes. 
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The eigenvalues with K = 0 are of order 5,  whereas the eigenvalues with K # 0 are 
equal to -(1 - aK) plus terms of order ij. So, if rj << 1 -a, the eigenvalues with K = 0 
are much smaller in absolute value than the eigenvalues with K # 0, and we can still 
distinguish the slow mode from the fast modes. Again, we use the abbreviation P = PX=o 
for the projector on the slow mode. For large t ,  the fast modes will be equilibrated, i.e. 

[l-PIQ = O  (21) 

a 
a t  

and only the dynamics on the slow mode remains: 

(22) 

Due to the constraint (21), ail the components Qk of Q are determined once QO is 
known. In other words, we can use the constraint (21) to derive a dynamical equation 
for Qo(w,  r )  = p ( w ,  t )  from (22). In this way, the fast variable q is eliminated from the 
master equation. 

Since the operator H is only known in the form of a series expansion, the best we can 
achieve is a series expansion of the evolution equation for Qo in powers of 5. In order to 
obtain this series expansion we only have to consider one of the components of (22). The 
zeroth component 

-PQ = H P Q .  

a 
a t  -(PQ)o = ( H P Q ) o  

is the most obvious choice. The unknown quantities in this equation are both Q and the 
projector P. Writing P as a series 

m 
p = 

"=O 

we can subtract the desired components of P(") from the properties Pz = P and HP = PH. 
Using equations (21) and (23) we can then express the components Qk with k # 0 in terms 
of the zeroth component Qo and derive an evolution equation for QO = P to arbitrary order 
in 6. In the appendix it is shown that this expansion yields 

3.2. Van Kampen's expansion 

To study (24) in the limit rj --t 0, we apply Van Kampen's expansion [ 121. We start with 
the ansatz 

w = C ( r )  + &< (25) 

where 7 = ijt and C ( t )  is a function to be determined (compare with section 2.1). Note 
that the constraint (21) and thus the evolution equation (24) is valid for times t = U(l/ij), 
i.e. for r = U(1) .  The function n(<, r )  is the probability I; in terms of the new variable 
F :  

n(<, r )  = P(+(r)  + 4%. r/ij). 
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From Van Kampen's expansion it immediately follows that the deterministic part 4 ( ~ )  has 
to satisfy the equation 

and that the evolution of n(<, T )  is governed by the Fokker-Planck equation 

The solution of the Fokker-Planck equation (27) is a Gaussian. so it suffices to determine 
the first and the second moments of 5 :  

From these equations, we can see that the fluctuations 5 are bounded if f ; ( 4 ( r ) )  e 0. If 
f satisfies this condition, the ansatz (25) is U posreriori justified. On the other hand, in 
case of non-negative f ; ( @ ( r ) ) ,  the fluctuations grow in time and the expansion need not to 
be valid. As in section 2.1, this condition on f does not depend on a. Note further that 
(t'), = U,, with the variance defined in section 2.2 the equations (26) and (28) are exactly 
equal to the set ( I  I )  which we derived in the limits a + 1 and y = q / ( l  - 

Direct application of Van Kampen's expansion to learning equations without 
momentum [5,6] leads to (26) and (27) with ij = 7 substituted. In the first place, this 
result is a verification of our analysis, since learning without momentum is learning with 
a = 0 and ij = q. In the second place, the result shows that for learning parameters 
q << ( I  - a)', from the point of view of the Fokker-Planck approximation, learning with 
a momentum term is equivalent to learning without a momentum term but with a rescaled 
learning parameter +. 

-+ 0. 

4. Simulations 

To illustrate the analytical results of the previous sections, we simulate the process of on- 
line learning with a momentum term for the nonlinear learning rule of Oja [I31 in two 
dimensions: 

AW(TI) = 7 ( X ~ K I ( ~ ) )  [ X  - ( x rw(n ) )  w(n ) ]  + U A W ( ~  - I )  

Oja's rule searches for the principal component of the input correlation matrix ( x x ' ) n .  
Inputs x are drawn at random from a rectangle centred at the origin, with sides of length 2 
and 1 along the x , -  and xz-axis, respectively. Simulations are performed with an ensemble of 
I00000 independently learning networks. The networks in the ensemble are asynchronously 
updated. This means that at each step only one randomly chosen network in the ensemble 
is updated. Hence, for a single network in the ensemble, the time intervals between updates 
are binomially distributed. For a large ensemble this distribution approaches 3 Poisson 
distribution 1171. The time-scale f is such that there is on average one learning step per 
unit of time for each network in the ensemble. All networks are initialized at the weight 
configuration w(0) = (0.3.0.3)'. Since the principal component of the input correlation 
matrix lies along the longest side of the rectangle, the weights W I  and w;? tend to I and 0, 
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Figure 1. Oja le-g with momentum updating. Means 4 and rescaled sum OF variances U [  

U a function of rescaled time T. All 100000 nehvorks s ta t  from w = (0.3,0.3)'. Momentum 
parameter c( = 0.9 for the full curves. er = 0.8 for the broken curves, and e = 0.6 for the chain 
curves. (a )  y =0.1: (b) y = 1; ( c )  y = 5 .  

respectively. In figures 1 and 2 we plot the evolutions of the average weights ( w ) ~ ~ , )  and 
of the trace of the covariance matrix 

for various values of a: and q .  
In section 2 we derived that, for small learning parameters q and momentum parameters 

a: close to 1, all combinations (q, a:) with the same value of y = q/ ( l  - a)' give rise to 
similar behaviour. We verify this scaling property in figure 1. In each graph we keep y 
constant ( y  = 0.1, 1, and 5 for figure l ( a ) ,  (b ) ,  and (c) ,  respectively) and present curves 
for different values of a: ((U = 0.9. 0.8, and 0.6 for the full, broken, and chain curves, 
respectively). Time and variance are rescaled with 6, i.e. we plot 

@ ( r )  = and oi(r) = ~ 2 ( ~ l G ~ l i i  
as functions of the rescaled time t (cf equation (10)). Curves with equal y are almost 
overlapping, except for the quite extreme values (U = 0.6 and 17 = 0.8 (the chain curves 
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( w ) z o . ~ ~  0 0 500 1000 1500 2000 
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Figure 2. Oja l eming  with momentum updating. M e n .  (U), and sum of vuhnces d os 
functions of time 1. All 100000 nclworks stan from w = (0.3.0.3)r.  Momenrum paramem 
& = 0 for the full curves, (I = 0.5 for the broken CUNS. and (I = 0.9 for the chain curves. 
('7) f =0.01; (b) f = 0.1. 

in figure l(c)): the simulation results are in perfect agreement with the scaling properties 
derived in section 2. 

In section 3 we considered the case q << (1 - cy)z, i.e. y << 1, and showed that 
combinations (q .  cy) are equivalent to combinations ( f i ,  0). This claim is verified in figure 2. 
In figures 2(a) and (b) the rescaled learning parameter f i  is kept constant (6 = 0.01 and 
0.1, respectively), thus there is no need to rescale time and variance. Each graph shows 
curves with different values of cy (cy = 0.0.5, and 0.9 for the full, broken, and chain curves, 
respectively), i.e. different values of y .  Cunres inside each graph are almost overlapping, 
even when the values of y differ by a factor 10 in magnitude (full and chain curve in 
figure 2(a)). The exception is the chain curve in figure 2(b) where y = 1 is not small 
enough for our analysis to be valid. We conclude that these simulation results agree very 
well with the analytical results of section 3. 

5. Discussion 

In this paper we have studied nonlinear on-line learning rules with a momentum term for 
small learning parameters q. We considered two cases: momentum parameters cy close to 
I ,  and finite momentum parameters cy. In the first case we took the limits q +. 0 and 
a + 1, keeping y = q/ ( l  -cy)* constant. Using Van Kampen's expansion we mived  at 
evolution equations for the average weight vector and the fluctuations around this average, 
These evolution equations depend (after proper rescaling of the time and the size of the 
fluctuations) only on the parameter y .  In the second case we kept cy constant and again 
took the Limit q -+ 0. We arrived at the conclusion that learning with learning parameter 
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q and momentum parameter 01 is equivalent to learning with a rescaled learning parameter 
= ~ / ( l  -0 ) .  Note that exactly the same conclusion follows from the first case in the 

limit y f 0. Thus, the analysis of the second case shows that the set of equations (9) 
resulting from the first case can be used not only for momenmm parameters CI close to I ,  
but also for more general values of CI. 

We tried to answer the question of whether incorporation of the momentum parameter 
really improves the performance of general on-line learning rules. For learning parameters 
q << (1 -or)’, we found that the effect of the momentum term is nothing but a rescaling of 
the learning parameter. For practical applications, this result is quite disappointing, but in 
agreement with the notion that the momentum term is hardly ever used in combination with 
on-line learning rules. The important exception is back-propagation. Indeed, it can be argued 
that incorporation of the momentum term is helpful for batch-mode back-propagation (see, 
for example, 19, 10, IS]). but neither these arguments nor the results presented in this paper 
can explain the popularity of on-line back-propagation with momentum updating. There 
might be several reasons for this. Our analysis holds only for small learning parameters q 
and in regions of weight space in the vicinity of local minima, so it could be that our analysis 
is too resbicted. Another option is that the momentum term only helps if the momentum 
parameter CI and learning parameter q are chosen such that y = q/ ( l  - 01)’ = O(1). 
Analysis of the evolution equations for linear learning rules, which can be solved for any 
finite value of (Y and q and are valid in the whole weight space, do not show any significant 
improvement of on-line learning with momentum term if compared to learning without 
momentum term (unpublished results). For stronger evidence we will have to come up with 
a more general analysis of nonlinear learning with momentum updating and/or work towards 
a better understanding of the set of nonlinear equations (9). At this point, we tend to the 
conclusion that the popularity of the momentum term in combination with on-line back- 
propagation cannot be explained in mathematical terms, but perhaps better in psychological 
terms: on-line back-propagators are afraid to choose a large learning parameter themselves. 
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Appendix 

In this appendix, we will show how to derive the evolution equation (24) for P ( w . t ) ,  
starting from the evolution equation (14) for the moment vector Q ( w .  t ) .  Since we are 
interested in P ( w ,  t )  = Qo(w,  t ) .  we consider the zeroth component of 

under the constraints 

(1 - P)Q = 0 .  (A21 
The operator H is defined in (15) and (16) and the projector P is written as a series 
expansion in (23). The unknown factors in (Al) and (A2) are not only the elements of the 
vector Q, but also the components of the corrections Pen' of the projector. The latter ones 
will be deduced from the relations P2 = P and HP = PH. 
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We expand both sides of (AI) to the two lowest orders in 6: 

00 

= [ij(ff(l)’P(o))~j + ~ 2 ( ( H ‘ 2 ’ P ‘ o ’ ) ~ j  + (H“)’P‘l’)~j] + U(ij’)) Qj (A3) 
j=O 

where we used that H$) = 0 V,. Note that there is a global scale factor ij on the right-hand 
side. This global scale factor will later be incorporated in a rescaled time. From (16) it 
follows that only the first (n + 1)th components of the zeroth row of H(”) can be non-zero. 
Therefore we only need to calculate the first two rows Pi)’ and ’Pl;), and the first three 
rows PG’, Pi;’ and PE). 

First, we calculate the components of the unperturbed projector P(O). Using 

[pCO)]Z = pC0) 

7y = U$,, 

pC0)H‘o’ = ~ ‘ ” ’ P C O ’  = 0 

we find that ‘Pp“’ has components 

where v is the vector satisfying H‘O’v = 0, with the function-value 

U0 = 1 

V I  = fl 
U 2  = I(1 - a ) f z  + zOrf:l/(l + a) 
U)= 

ients 

Now we consider the first correction ?(I). From ‘Pz = ’P, the first correction ”cl) 
should satisfy 

pC1) = pC0)pCl) + pC1)pCO) , 

For the components of P(’) this implies 

which, after some rewriting, yields 
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Using the explicit forms of H“, H(’) and P@), we deduce from (A4) and (A5) that 

Pi:) = 0 

Q i  = fi Qo + Will. 

for k > 2 .  
The constraint (A2) gives the relation between the zeroth and the first component of Q: 

(A7) 
Substitution of the expansions (16), (A6) and (A7) for the operator H, the projector P and 
the moment vector Q, respectively, into the evolution equation (AI) finally leads to 

which, after substitution of Qo(w, t )  = b ( w ,  f). gives the desired result (24). 
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